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A LEAST SQUARES PETROV-GALERKIN FINITE ELEMENT METHOD 
FOR THE STATIONARY NAVIER-STOKES EQUATIONS 

TIAN-XIAO ZHOU AND MIN-FU FENG 

ABSTRACT. In this paper, a Galerkin/least squares-type finite element method is 
proposed and analyzed for the stationary Navier-Stokes equations. The method 
is consistent and stable for any combination of discrete velocity and pressure 
spaces (without requiring a Babuska-Brezzi stability condition). The existence, 
uniqueness and convergence (at optimal rate) of the discrete solution is proved 
in the case of sufficient viscosity (or small data). 

1. INTRODUCTION 

For mixed finite element methods solving the stationary Navier-Stokes equa- 
tions, it is an important convergence stability condition that the Babu'ska-Brezzi 
inequality holds for the combination of finite element subspaces (see [1, 13]). 
Recently, in an attempt to circumvent this constraint, the so-called CBB [6] or 
stabilized finite element methods [2-5] have been developed, motivated by SD 
(or SUPG) methods [7, 8]. In addition to works [3-6] on the Stokes problems, 
the paper [9] proposed and analyzed a stabilized SD method for time-dependent 
N-S equations, and a stabilized, piecewise discontinuous vorticity-stream func- 
tion formulation of mesh-dependent type for stationary N-S equations has been 
discussed in the paper [10] based on so-called homology families of generalized 
variational principles. 

The present paper considers the stationary N-S equations in primitive vari- 
ables. In this direction, L. Tobiska and G. Lube [12] proposed a penalty finite 
element method of streamline diffusion type. It is a stabilized method in which 
the finite element spaces of velocity and pressure are not required to satisfy the 
discrete B-B condition. But it is not consistent with the exact solution, owing 
to the addition of the penalty term a(Vp, Vq), and the optimal estimates of 
convergence rate cannot be achieved. In this paper, another stabilized finite 
element method is studied, which is different from the method in [1 1, 12]. It 
is an application of the Galerkin/least squares method [14] and its alternative 
[16] to nonlinear equations. Least squares forms of residuals are added to the 
Galerkin method for enhancing its stability without degrading accuracy. 

For the following presentation we introduce the following notation: X = 

V x Q, V = Ho (Q)n, Q = L2(Q) = {q E L2(Q)j fQ q dx = O} , (?, ?)G the 

Received by the editor January 9, 1991 and, in revised form, August 21, 1991 and March 31, 
1992. 

1991 Mathematics Subject Classification. Primary 65N30. 
The research was supported by the Chinese Aeronautical Science Foundation. 

0 
1993 American Mathematical Society 

0025-5718/93 $1.00 + $.25 per page 

531 



532 TIAN-XIAO ZHOU AND MIN-FU FENG 

inner product in L2(G) and L2(G)n, respectively, G c Q. Let IIWlk,p,PG and 
lwlk ,p G be the usual norm and seminorm on the Sobolev space Wk ,P(G), 
respectively. For vector-valued functions u = (ul, ... , un) E Wk P(G)n and 
v = (vI, * . *, vn) E L`?(G)n we use the following norms and seminorms, respec- 
tively: IUlk ,p, G = Zi=l IIUillk,p G' lUlIpG = ZI= lUilIp IIVIIO,oo,G = 

maxi IIViII0O,o,G. In the case of G = Q and p = 2 we omit the indices G and 
p- 

Throughout the paper, C indicates a positive constant, possibly different at 
different occurrences, which is independent of the mesh parameter h, but may 
depend on Q, on the Reynolds number and other parameters introduced in this 
paper. Notations not especially explained are used with their usual meanings. 

An outline of the paper follows. In ?2 we present the new finite element 
variational formulation for the N-S equations. The existence and uniqueness 
of the finite element solution is studied in ?3. Its error analysis is performed in 
?4, and concluding remarks are made in ?5. 

2. FINITE ELEMENT FORMULATION 

Let Q be a convex domain with boundary F in Rn (n = 2, 3). We consider 
the following stationary Navier-Stokes equations with boundary conditions: 

-jtAU+(uV)u+Vp=f inQ, 
(2.1) divu=O inQ, 

u=O onF, 

where u = (u1, ..., un) is the velocity vector, p the pressure, f = (f,... fn) 
the body force, and ,u the constant inverse Reynolds number. Problem (2.1) is 
equivalent to the following variational problem: 

Find (u,p) e X such that forall (v, q) E X 

(2.2) ua(u, v) + b(u; u, v) - (p, divv) + (q, divu) =(f,v), 

where 

a(u, v) = JVuVvdx, 
n 

b(u; v, w) = ZJ uiOvj/Oxiwdx Vu, v, w e V, 

b(u; v, w) = '{b(u; v, w) - b(u; w, v)} Vu, v, w E V. 

We define 

N= Sup b(u; v, w) lIfII* = Sup (f, v) 
u,v,wEV IuIiIvIiIwIi vEV lvii 

Theorem 2.1 [1]. Iff E H-1 (Q),n then the problem (2.2) has a solution which, 
in addition, is unique provided that ,u-2 NIIfII* < 1. 

Let {5 h} be a family of triangulations of Q into affinely equivalent finite 
elements K with Q = UKEXh K, which is assumed to be regular in the usual 
sense, and let hK = diamK. We also assume that h/hK < C, VK E 
h = maxK hK, so that we can use inverse inequalities. 
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We introduce the following finite element spaces of velocity and pressure: 

Vh(Q) = {v G Ho (Q)n: VIK E Pl(X), VK E gh}, 

Qh(9) = {q E Q n H1(Q): q|K E Pk(x), VK E h}. 
Here, P,(x), Pk(x) denote piecewise polynomials of degree / and k, respec- 
tively. We let Xh = Vh X Qh- 

Paper [12] proposed the following penalty finite element method of stream- 
line diffusion type with the penalty term a(Vp, Vq) for (2.2): 

Find Uh = (Uh, Ph) E Xh such that for all v E Xh 

,ua(Uh, v) + b(Uh; Uh, V)-(Ph, divv) + (q, divuh) 

+ Z 6K(-IiAUh + (UhV)Uh + Vph, (UhV)V + Vq)K 

(2.3) K 
+ a(VPh, Vq) 

= (f, v) + Z3K(f, (UhV)V + Vq)K. 
K 

In order to establish existence, uniqueness, and convergence of the solution of 
(2.3), the parameter 3K is required to satisfy the condition 0 < 3K < Ci h 
where C1 is a certain constant. 

In this paper, we present the following Petrov-Galerkin finite element formu- 
lation for problem (2.1): Find ih = (Uh, Ph) E Xh such that for all v5 E Xh 

ua(Uh, v)+b(Uh; Uh, V)-(Ph, divv)+(q, divuh) 

+ ,J 3K(-iAUh + (UhV)Uh + VPh, -uAv + (UhV)V + Vq)K 
(2.4) k 

- (f, V) + - K(f , -uAV + (uhV)v + Vq)K, 
K 

where 3K = ah2 , and a > 0 is arbitrary. 
For u c V, Uh E Vh, v = (v, q), tw = (w, r) E V x (Qn HI (Q)), we define 

B3(u, Uh; ', Wb) = ,a(v, w) + b(u; v, w) - (q, divw) + (r, divv) 

+ Z3 K(-IAV + uvV + Vq, -,uAw + uhVw + Vr)K, 
K 

L3(Uh; Wi) = (f, w) + Z3K(f, -YuAw + UhVW + Vr)K, 
K 

where 3 is the piecewise constant function defined by 31K = 3K. Then (2.4) 
can be rewritten in the following form: Find Uh = (Uh, Ph) E Xh such that 

(2.5) B3(uh, Uh, Uh, W) = L3(Uh; tW) VW E Xh. 

Remark 1. Assume f belongs to L2(Q)n and the solution (u, p) of (2.1) 
belongs to (V n H2(Q)n) x (Q n H1 (Q)); i.e., there holds 

-uAu + uVu + Vp=f in L2(Q)n. 

Then ui = (u, p) satisfies 

(2.6) B3(u, Uh; fiU, i) = L(Uh; tb) VUh E Vh, W E Xh, 

i.e., (2.5) is consistent with the exact solution of problem (2.1) or (2.2). 
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3. EXISTENCE AND UNIQUENESS OF THE FINITE ELEMENT SOLUTION 

For the discrete problem (2.5) we will establish existence and uniqueness of 
an approximate solution without requiring the B-B condition. 

Theorem 3.1. If f E L2(Q)n, then (2.5) has at least one solution Uh = (Uh, Ph) 

E Xh. 

Proof. We use Brouwer's fixed point theorem to prove our theorem. The proof 
proceeds in two steps. 

(I) For a given Vh E Xh, the following linearized problem of (2.5) has a 
unique solution: 

Find Uh = (Uh, Ph) E Xh such that 

(3.1) Bj(Vh, Vh; ih, tb) = L(Vh; tb) Vh E Xh. 

In fact, we have 

B3(Vh, Vh; Uh, Uh) = IlUhIi + 113/2(- uAUh + VhVUh + Vph)II,h, 

where 11 ? IIO,h = (ZK 11 ? Io0K)12. By virtue of the coercivity of the bilinear 
form B3(vh, Vh; i, tb) there exists a unique solution of (3.1), and since 

L3(Vh; Uih) = (f, Uh) + E 3K(f, -YAUh + VhVUh + VPh)K 
K 

1 8 l l l 2 + 11(51/2 
112, 

1/2 
X (GlUhI + 113112(-YAUh + VhVUh + VPh) 0 h) 

we get 

(GUIhI2 + 1131U2(-Auh + VhVUh + VPh) 0,h) 

< (/U- 
I 

lf 112 + 11(51/2f 112)1/2 

or 

(Iu|I1 + I,U11| 1 (-YAuh + VhVUh + VPh) II ,) h) 

(3.2) < 
1 

f 1*2 + ,u 1 i5/2f 1 )1/2 

Therefore, for arbitrarily given Vh E Xh, the solution of (3.1) determines a map 
F: Vh -' Uh = F(h) . 

For convenience, let 1 = (IIfII2 + II 112fII2l)1/2 R 1/ 
(II) For the set BR = {Vh E Xh: lVhll < R}, F is a continuous map from 

BR to BR. In fact, by virtue of the estimate (3.2), it is easy to show that 
F: BR -' BR. Thus, we only need to prove F is continuous. 

Let for arbitrarily given Vs E BR the approximations uh = F(li) (i = 1, 2) 
be defined by (3.1); then we have 

(3.3) B (v, iIVi; Us', Wb) = Lj(vi ; Wb) Vtb E Xh 

and 

(3.4) (|ui 12 + ,u-c1jj112(-_uAui + vi Vui + VpI)iI,h)112 < R (i = 1, 2). 
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By (3.3), we have 

Bj(v', v I 
Ih, W) - Bj (V2, Vs2; U2, Wb) 

(3.5) =Z3K(f, (vV-v2)Vw)K Vw E Xh. 
K 

Now we choose w' = tu , - u i.e., tb =(w, r) = (ul - u2, pI - p2). We have 

(3.6) Bj(vh, vh; tb, tW) = 4lwI2l + 1ll112(-uAw + vhVw + Vr)I112h 

and 

B,5(vh, v Vh; , W') =Bah,5 (v 
I I; Usl Wb)-_B,(Vh, VIl -2, W-) 

=, B(vh2 V2 ; f12,tb W- Ba a,5 (vh 
1 1 , 2W-) 

+ZEK(f, (VI -V2)VW)K (by 3.5) 
K 

=b(v 2 _VI; U2, W 

(3.7) + j 3K( (V2 - V 1)Vu2, -,uAw + v1Vw + Vr)K 
K 

+ Z JK(-AU2h + V2VU2 + Vp2 , (Vs -V2)VW)K 
K 

+ E ZK(f, (VI -V2)VW)K 
K 

SI + S2 + S3 + S4. 

For S4, it is easy to get 

(3.8) 1S41 < llV I_ 
- vll,colw l ilf l10. 

By means of Sobolev's embedding theorem and an inverse inequality, we can 
prove that 

(3.9) iv llo,oo < CohX lvil Vv E Vh 

with X > 0 arbitrary in the case of n = 2 and X = 1/2 in the case of n = 3. 
Thus, (3.8) yields 

(3.10) 1S41 < Coh-x llfIlolv - vllwlh ? CO,il/2 /'2h-XR lv'-v|lII, 

where gM = maxXEz8 = ah2. Similarly, by (3.4), (3.9) and the Cauchy- 
Schwarz inequality, we get 

(3.11) ISit < NRIV2 _ vIII wIi 

(3.12) 1S21 < CoRhx6}12Iv2 _ V I 
II I8j1/2(-,Aw + v Vw + Vr)11o,h, 

(3.13) 1S31 ? COji1h/23MxhXR h v-h |w|i. 

Combining (3.10), (3.1 1), and (3.13), we have 

|Sit + S3I + IS4 < (NR + 2COiU1/2tM 1hxR)Iv'h h v wIi, 
i.e., 

(3.14) IS, I + IS31 + IS41 < M(R) lv' _V^21, Iwl I. 
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By (3.12), (3.14) and Cauchy's inequality, we obtain 
4 

(3.15) I Sil| < L(R)lv' _ V2|1i (, I W 12 + 11|1/2 (_-iW + v Vw + Vr) Ih )1/2. 
i=l 

Then, by (3.6), (3.7), (3.15), we finally get 

(3.16) (,uIw12 + II51/2(-,_Aw + v Vw + Vr) 112 h)/2 < L(R)lv, - v 21, 

where M(R), L(R) are constants independent of Vi and Ui. Noting that 
wb = ul- _f and (3.16), we conclude that F is a continuous map from BR 
to BR. By Brouwer's fixed point theory, this implies that F has at least one 
fixed point Uh = F(u ), i.e., the problem (2.5) has at least one solution Uh = 

(Uh,ph) EXh- ? 

Theorem 3.2. Assume that f E L2(Q)n, ,-2NIIfII* < 1. Then there is a con- 
stant ho > 0 such that for all h < ho the problem (2.5) is uniquely solvable, 
and the solution Uh = (Uh, Ph) satisfies the estimate 

(3.17) (CluuhI + 113112(-4Uuh 
+ UhVuh +VPh) 0 h) 

* ~~~~~< (P-1 
I 

lf 112 + 11(51/2f112)1/2. 

Proof. From Theorem 3.1 we know that the problem (2.5) has at least one 
solution Uh = (Uh, Ph) E Xh such that 

(3.18) B6 (Uh Uh ; ih, W d) = Lj (Uh; Wb) Vw E Xh. 

Setting tw = Uh in (3.18), we have 

(3.19) B3(uhh, Uh; Uh, Uh) = L3(Uh; Uh), 

(3.20) B3(uh, Uh; Uh, Uh) = PIuhIl + || 3 (-/lUh + UhVUh + VPh)I,Ih, 

(3.21) L3(Uh; Uh) ? (i'1I0IfII + 
X (ClUhI + 11312(-JUAUh + UhVUh + VPh) 0 h) 

By (3.19), (3.20), and (3.21), we have 

(3.22) (GItuI + 11Uh 1 2(-/lAuh 
+ UhVuh + VPh) 0 h) 

* ~~~~~< (y- 
I 

lf 112 + 11(51/2f 112)1/2. 

If we let R - (Ilf 12 + 116112f 112 1/2, then (3.22) can be rewritten as follows: 

(3.23) (IU12 + I 11351/2(-12Au1 + uhVuh + VPh)IIh)1/2 < R. 

In order to prove Uh E Xh to be the unique solution of (2.5), we suppose i4 
(i = 1, 2) are two solutions of (2.5); by the above results we easily conclude 
that 

(3.24) (Iui 12 + ic- 11,1/2(_-AUi + UiVUi + VPi4)IIo,h)12 < R (i = 1, 2) 

and 

B h Sh ;h, W )- h h hs s s 

(3.25) = Z3K(f, (us - uh)Vw)K Vwi E Xh. 
K 
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Now let w = iI - r2 , i.e., e (w, r) = (ul - uh' ph I-p2). We have 

(3.26) B3(u', ul; W , W') = yuWIw2 + 2(_ + uVW + Vr)Ih 

and 

(3.27) B(uh, Uh; W , W') =B3(uh, Uh; Uh, tW) - B(Ul, Uh; Uh, W)- 

By using the same arguments as in the proof of Theorem 3.1 .(II), based on 
(3.24)-(3.27), we can get an estimate similar to (3.16): 

(3.28) uI wI2 + 111,1/2(_ ^W + UtVW + Vr)II1h 

< (NR + 2Co0 1/2312h-xR + ICo2,mh-2xR2)Iw12 
Since 

R = i-l(IlfII2 +'I11,112fII1))1/2 <? /fIIfII + i- 1121I/Ifo 

(3.28) becomes 

,iIW12(l /-2 -uyN3IfI112 AlUl(l 
-Nllf II* 

_ -32m Nllfllo 

(3.29) -2co0 1/212h-XR1 - -2Co/3MhXR2) 

+ 11131/2(_-AW + U"Vw + Vr)112,h ? 0 

As ,u-2NIIf II < 1, there exists a constant wil c (0, 1) such that ,u-2NIIf II < 
wi <1. Since 3M = ah2, 3112h-X -O ash - 0, thereisaconstant ho >0 
such that for all h < ho 
(3.30) 

,ij-3/23l/2NII 
+ 2C0/1/2 51/2h-R+~oI MX (1-w) 

(3.30 ,u M Nllf 110+ 2CO/i h/2-xR + ICo2y-16mh -2xR 2 < I( 

By (3.29) and (3.30), we obtain 

(3.31) 2 (I - (i1)[ylW 12 + 113112(-_AW + U4Vw + Vr)112 hi ? 0. 

This means that WI12 = IIu1/2(-_Aw + u^Vw + Vr)IIOh = 0, that is, u= 

Uh? 

4. CONVERGENCE OF THE METHOD 

This section is devoted to establishing convergence results on the 
Galerkin/least squares finite element approximation for any choice of discrete 
velocity and pressure spaces. 

Theorem 4.1. Assume that f E L2(Q)n, and let {Uh} be a sequence of solutions 
of (2.5) as h tends to zero. Then there is a subsequence {ih } which converges 
strongly to a solution ui of (2.2) in the sense of 

(4.1) lim(Iu - uhIl + a1/2hIIVp -7VphIIo) = 0. 

Proof. From Theorem 3.2 we see that {Uih} is uniformly bounded with respect 
to h, i.e., there exists a constant C independent of h and juh such that 

(4.2) (jluhli + Z3KII - /IAuh + uhVuh + VPhH~2K) 1/2 
(4.2) ( lUhl| + E6K || - IA^Uh + UhVUh + VPh 0,o2,K ) <C 
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Using h/hK < C, 3K = ahk, (4.2) and an inverse inequality, we obtain 

(4.3) |UhIl + a112hIIVphIIo < C. 

By (4.3) we have 

(4.4) IlPhIlo < C(c), 

where C(a) denotes a constant dependent on a and independent of h and 
Ush. Therefore, we get 

(4.5) IUhIl + IIPhlO 
< 

C(a9). 

Consequently, by (4.5) there is a weakly converging subsequence in V x Q, 
which for simplicity we denote again by {Uh}. We will show that the weak 
limit ui is a solution of (2.2). For this, let Ih (Ih, Ih2): (V n H2(Q)n) x (Q n 

H1(Q)) - Vh X Qh be the usual Lagrangian interpolation operator [15]. Setting 
w = Ih- (Ihlv, Ih2q) in (2.5), we conclude that, as h tends to zero, 

(4.6) ,ua(u, v)+b(u; u, v)-(p, divv)+(q, divu) = (f, v)+ limFl, h-+0 

where 

Fh1 - 3K(f + uAUh - Uh VUh - VPh, -/AIhV + Uh VIhi V + VIh2q)K. 
K 

By (4.2) and Cauchy's inequality and an inverse inequality, we have 

Fh I < Z5KIfII10,K11 - uAIhV + UhVIh,V + VIh2qllO,K 
K 

+ (Z 5KII - IAUh + UhVUh + VPh o, K) 

(4.7) (> || (Z Kjj -AIhV + UhVIhV + VIh2qjj2 ) 

(miIf 110 + C 12)(11 - IAIhVlIIo,h + IlUhVIhV + VIh2qllo) 

? (6Mlfilo l+ CM/2 ) (11 - uA(V - Ihv) Io, h + 11 - uAV lo 

+ Cohx|IIlhvl + Iq- + -qIl) 

? (C1M12 + MIIlfIIO)(C11v112 + Ch-xIllvII + Cllqll1) 
? C(f, O)jM12 h-x < C(f, D)h`x, 

where C(f, v) denotes a constant dependent on f and v, but independent 
of h. This gives limhOFhl = 0, since 1 - X > 0; i.e., for v = (v, q) c 
(VnH2(Q)n) x (QfnlH(Q)), (4.6) becomes 

(4.8) ua(u, v) + b(u; u, v) - (p, divv) + (q, divu) =(f,v). 

Since (v n H2(Q)n) x (Q n HI (Q)) is dense in V x Q, we obtain that 

4ua(u, v) + b(u; u, v) - (p, divv) + (q, divu) 
(4) = (f, v) V = (v, q) E V x Q; 

i.e., (u, p) is a weak solution. 
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Now we prove that liMh,o(Iu - Uh I I + a l/2hlp - Ph I 1) = 0 . In fact, for 
f E L2(Q)n, the solution i = (u, p) of (2.2) belongs to (Ho'(Q) n H2(Q))n x 
(H1(Q)/R) and there holds ua(u, u) = (f, u) . Therefore, 

U_ hIhl U|1 2+ 11611 12,7 _ Ih2p) |lo 2 /IIUh - IhI + 
(P11Vh 

- I 
,piih 

= aua(Uh -IhU, Uh -IhU) + K(V (Ph -Ih2P), V(Ph -Ih2P)) K 
K 

(4.10) = ua(Uh, Uh) + ZK (VPh, Vph)-ua(2Uh -Ih U, Ih U) 
K 

-E Z '5K(V(2Ph - Ihp), VIhP)K- 
K 

Recalling that Uh = (Uh, Ph) satisfies (2.5), we have 

(4.11) aa(uh, Uh)=(f, Uh)+Fh2, 

where 

Fh= K(f + uAUh - UhVUh - VPh, -IiAUh + UhVUh + VPh)K 
K 

and 

F= - K (Vph , VPh) + Z JK (f + iAUh -UhV Uh , Vph) K 

(4.12) K K 

+ 1j 3(f + AUh - UhVUh - VPh, -uAUh + UhVUh)K. 
K 

By (4.10), (4.1 1), and (4.12), we get 

lI Uh -IhUIi + 113112V(Ph -IhP)Iloh 

-(f, Uh) - /a (2Uh - Ihu, Ihlu) - EZ K(V(2Ph - Ih2P), VIhP)K 
K 

(4.13) + Z 'oK(f + uAUh - UhVUh , VPh)K 
K 

+ j 3K(f + uAUh - UhVUh - VPh, -MAUh + UhVUh)K 
K 

=: (f, Uh) - ua(2Uh - IhU, Ih,U) + Fh- 

By using the same techniques used in deriving the estimates of F', we obtain 

(4.14) hF*I < C31/2hX. 

Thus, we conclude from (4.13) and (4.14) that as h -- 0 

(4.15) lim( uhIh U 2 + I15112V - Ih2p) || 2) = (f, u) - ua(u, u) = 0. 

By virtue of the definition of 3 and the assumption h/hK ? C, (4.15) yields 

lim(|Uh - Ih U|i + a12 hIPh - Ih2PII) = 0- 
h-0O 

Finally, liMh,o(iu - Uh II +a a12hip -PhII) = 0. 
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Remark 2. In the proof of (4.14), we used (4.2) and |luhH|O,- < Coh-xulhll 
and (ZK IIAUhII0,K)1/ ? Ch0uKi - 

Theorem 4.2. Assume that ,u-2Nllf 11* < 1 and that the exact solution tu = (u, p) 
of (2.2) belongs to the space (Wol?'(Q) n Wl+'(Q))n x Wk+l(Q), 1, k E N. 
Then there is a positive constant h* such that the following error estimate holds 

for the solution Uh = (uh, Ph) of (2.5) for h < h*: 

(jlU -uhI + I11U12[-,i(u-uh) + UhV(U - Uh) + V(p -Ph)IIIh) / 

< C(hl + h k+ l) , 

where the constant C depends on the seminorms lu1l,,,,,, IU1i+1, lPlk+l of the 
exact solution of (2.2). 
Proof. According to Theorem 2.1 and Theorem 3.2, both problems (2.2) and 
(2.5) have uniquely determined solutions. Let Wh = IU - Uh, i.e., Wh = 

(wh, rh) = (IhU- Uh- , Ih2p- Ph) . It is easy to see that 

(4.16) SI =: B(uh, uh; Wh, Wh) = /IwhIl+h I 2(-_IAwh+uhVwh+Vrh)IIO,h, 

and from (2.5), (2.6) we derive that 

(4.17) SI = BJ (uh, uh; Ihi, wh)-B3(uh, uh; ih, th) 
= B3(uh, uh; IhU, Wh) -B3(u, Uh; u, Wh); 

i.e., 
SI = S2 + S3 + S4, 

where 

S2 = ua(Ihu-u, wh) - (I2p -p, divwh), 

S3 = 1 3K(-/A(Ih,u - U) + UhVIh'u - UVU + V(Ihp - p), -MAwh + UhVWh + Vrh)K, 
K 

54 = b(uh; Ih'u, Wh) - b(u; U, Wh) + (rh, div(Ihu - u)). 

By using well-known interpolation error estimates [15], it is easy to get 

(4.18) 1S21 < C(hl + hk+1)lwhll , 

1S31 < 4 ZKII - 4uWh + UhVWh + VrhIO,K + C3M(h212 + h2k) 
K 

(4.19) + C.MIIuhV(Ihu - u) + (Uh -u)VuIo 

< 1 jI/(-YAWh + UhVWh + Vrh)II1,1 

+ C,5MIwhI12 + C5M(h21-2 + h2k + h21-2X + h21+2) 

It should be mentioned that the constants C in (4.18) and (4.19) depend on 
the seminorms of the exact solution. 

For S4, by using Green's formula, we have 

(rh, div(Ihlu - u)) = (uhVwh, Ihu - u) - (UhVWh + Vrh, Ihu-u), 
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and then 

S4 = b(uh; IhU - U, Wh) + b(Ihu - u; U, Wh) - b(wh; U, Wh) 

+ (UhVWh, Ihu - U) - (UhVWh + Vrh, Ilu - u). 

Recalling that Uh is bounded and that for the exact solution ui we have u < 

,'II f 1*, and using an inverse estimate, we get 

IS41 < Ch'Iwh I l + ,u1NIf II* lwh I'l 

+ Z(-IiWh + UhVVWh + Vrh, IhU - U)K 
K 

(4.20) + Z(-/tAWh, IhU-U)K 
K 

? ChIlwhl|1 + ,u NIfII*IWh + C.inh21+2 
+ 1J1W2(-/ hWh + UhVWh + Vrh)11O,h' 

where 6min = minXEn3 = infK3K. Combining (4.16) with (4.17)-(4.20), we 
have 

(4.21) i 1- 2NIIfII*-C3M) + (-YWh + UhVWh + Vrh)I, h 

< C(h' + hk+ )IWhIl + C6m(h21-2 + h2k + h21-2X) + Cjl+h 

Taking into account 3M = ah2 and /-2NIIf II < 1, we may conclude that 
there exists a sufficiently small h* > 0 such that 

(/LIwh1?2 + 116112 (-/Awh + Uh Wh + Vrh)112o, h)2 

< C(h' + hk+l + 6-112hh+1) 

for all h < h*. Since 5K = ahk, h/hK < C, we then obtain 

(4.22) (itIwhI? + I 13112(-/lAwh 
+ UhVWh + Vrh)II ,h)1 

< C(h' + hk+1). 

Noting that 'Wh = Ih i - Uh, and using the triangle inequality, we finally get 

(IlU - UhIi + Uh3112[-,i(u-Uh) + UhV(U - Uh) + V(p -Ph)]II,h)1/ 

< C(hl + hk+l). [ 

Remark 3. By using Nitsche's duality technique, we can also get L2-error esti- 
mates for velocity and pressure. 

Remark 4. If the finite element pressure subspace Q belongs only to Lo(Q) 
we need to add the boundary integral term EK fJhK 4K [q][r] ds to 
Bj(u, Uh; iV, W') (where /1 > 0, [q] = q+ - q_) in order to obtain corre- 
sponding convergence results. 

5. CONCLUSION 

A finite element method of Galerkin/least squares-type for approximating the 
stationary N-S equations in primitive variables is presented with the following 
characteristics: 
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(i) The method exhibits stable and convergent approximation with optimal 
rate for any choice of the discrete velocity and pressure spaces, in contrast with 
the Galerkin mixed methods, in which the discrete B-B condition is required. 
For the 3-dimensional analysis, this point has important significance because of 
the implementational simplicity of lower and equal-order interpolations. 

(ii) The method is variationally consistent, and the parameter a > 0 can 
be arbitrarily chosen, yielding practical convenience and improved convergence 
error estimates compared to the associated penalty-type method [12]. 
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